
Milestone Systems

XProtect® Webhooks 2023 R1

Administrator manual

Contents
Copyright, trademarks, and disclaimer 4

Supported VMS products and versions 5

Overview 6

Introduction 6

Installation 7

Webhooks installation 7

Configuration 8

Creating webhooks in XProtect 8

1. Create the webhook URL 8

2. Create a webhook in the Management Client 8

3. Create a rule to trigger the webhook 9

Test the webhook from XProtect (Optional) 9

Integrations 10

Webhook integrations 10

No-code integrations 10

Code integrations 10

Integrations - examples 11

No-code webhook integrations 11

Example - Send an email with IFTTT when an event is triggered 11

1. Connect a webhook in IFTTT 11

2. Create a webhook in XProtect 12

Trigger the webhook with a rule in XProtect 13

Test the webhook from XProtect (Optional) 13

Changing the email content (Optional) 14

Code webhook integrations 14

Example: Receiving events from XProtect in Node.js (with Express) 14

Create and start a Node.js Express server 14

Create a webhook in XProtect 17

For Node.js servers without public addresses 17

Trigger the webhook with a rule in XProtect 17

Test the webhook from XProtect (Optional) 18

Troubleshooting (Optional) 18

Example: Receiving events from XProtect in Python (with Flask) 18

Create and start a Python Flask server 18

Create a webhook in XProtect 21

For Python on machines without public addresses 21

Trigger the webhook with a rule in XProtect 21

Test the webhook from XProtect (Optional) 22

Troubleshooting (Optional) 22

API Documentation 23

The webhooks API 23

HTTP POST Body (version 1.0) 23

HTTP POST Headers 25

Failed requests and retry policy 26

Improving webhook security with tokens 26

To improve your webhook security, you must: 26

Generate a secret token 26

Configure a secret token in the Management Client 27

Validate incoming requests on the receiving webserver 27

Signature validation examples 27

Copyright, trademarks, and disclaimer
Copyright © 2023 Milestone Systems A/S

Trademarks

XProtect is a registered trademark of Milestone Systems A/S.

Microsoft andWindows are registered trademarks of Microsoft Corporation. App Store is a service mark of Apple Inc. Android is a
trademark of Google Inc.

All other trademarks mentioned in this document are trademarks of their respective owners.

Disclaimer

This text is intended for general information purposes only, and due care has been taken in its preparation.

Any risk arising from the use of this information rests with the recipient, and nothing herein should be construed as constituting any
kind of warranty.

Milestone Systems A/S reserves the right to make adjustments without prior notification.

All names of people and organizations used in the examples in this text are fictitious. Any resemblance to any actual organization or
person, living or dead, is purely coincidental and unintended.

This product may make use of third-party software for which specific terms and conditions may apply. When that is the case, you can
findmore information in the file 3rd_party_software_terms_and_conditions.txt located in your Milestone system installation folder.

Supported VMS products and versions
This manual describes features supported by the following XProtect VMS products:

l XProtect Corporate

l XProtect Expert

l XProtect Professional+

l XProtect Express+

l XProtect Essential+

Milestone tests the features described in this manual with the above-mentioned XProtect VMS products in the current release version
and the two previous release versions.

If new features are only supported by the current release version and not any previous release versions, you can find information
about this in the feature descriptions.

You can find the documentation for XProtect clients and add-ons supported by the retired XProtect VMS products mentioned below on
the Milestone download page (https://www.milestonesys.com/downloads/).

l XProtect Enterprise

l XProtect Professional

l XProtect Express

l XProtect Essential

https://www.milestonesys.com/downloads/

Overview

Introduction
This manual describes the webhooks feature. Webhooks are HTTP requests that enable web applications to communicate with each
other and facilitates the sending of real-time data from one application to another when a predefined event occurs, for example
sending event data to a predefined webhook endpoint when a user logs on to the system or when a camera reports an error.

A webhook endpoint (webhook URL) is the predefined address which the event data is to be sent to, much like a one-way telephone
number.

You can use webhooks to build integrations which subscribe to selected events in XProtect. When an event is triggered, an HTTP POST
is sent to the webhook endpoint you have defined for that event. The HTTP POST body contains event data in JSON.

Webhooks do not poll the system for data or triggered events, instead, the system pushes event data to the webhook endpoint when
an event occurs whichmakes webhooks less resource-demanding and faster to set up compared to polling-solutions.

Webhooks can be set up to integrate with or without using code scripts.

You should verify that the event data sent from XProtect complies with the existing data and privacy protection
legislation of your country.

Installation

Webhooks installation
The webhooks functionality is contained in the webhooks plugin.

The webhooks plugin is by default installed and ready to use on XProtect 2023R1 or later. The webhooks plugin displays theWebhooks
action on the Rules tab in the Management Client.

Configuration

Creating webhooks in XProtect
To create and configure a webhook, you should:

1. Create the webhook URL.

2. Create a webhook in the Management Client.

3. Create a rule to trigger the webhook in the Management Client.

4. Test the webhook rule and actions from XProtect (Optional).

1. Create the webhook URL

Generate or obtain the URL of the webserver or application you want to send event data to.

The URLmust be static and secure as the URL will be registered in XProtect and used repeatedly to receive event data from XProtect.

If the URL of the webserver is updated, youmust update the webhook URL in XProtect.

You can use http:// instead of https://, but using http:// through non-secure networks may expose event data in
plain text. Using the more secure https:// is strongly recommended.

2. Create a webhook in the Management Client
1. In theManagement Client > Rules and Events >Webhooks, right-clickWebhooks and select Add New…

2. InWebhook Information:

a. Name field: Enter a unique name for the webhook.

b. Address field: Enter the URL for the webhook starting with https://. You can use http:// instead of https://, but using
http:// through non-secure networks may expose event data in plain text. Using the more secure https:// is strongly
recommended.

c. Token (optional) field: Enter a token if you want to sign the webhooks requests.

3. Click Save in the toolbar to save the newwebhook.

3. Create a rule to trigger the webhook
1. In theManagement Client > Rules and Events > Rules, right-click Rules and select Add Rule… to start theManage Rule

wizard at Step 1: Type of rule.

2. In Step 1: Type of rule, specify a name and a description of the new rule in the Name andDescription fields respectively.

3. In the Select the rule type you want you to create pane, select Perform an action on <event>

4. In the Edit the rule description pane, click event and select an event.

5. ClickOK to create the event.

6. ClickNext to go to Step 2: Conditions.

7. In Step 2: Conditions, apply any conditions relevant to the event you are creating.

8. ClickNext to go to Step 3: Actions.

9. In Step 3: Actions, scroll down and select Send event info to webhooks at <address>.

10. Click address on the Edit the rule description pane.

11. Add a predefined webhook and clickOK.

12. ClickNext to go to the wizard's third step.

13. In Step 4: Stop criteria, click Finish to create the rule.

When the event you have created is triggered, an HTTP POST will be sent to the URL you configured in the Address field of the
webhook specified for the event.

The payload (body) of the HTTP POST will contain event data from the event that triggered the rule.

Depending on your requirements, youmay also have to set up a procedure on the webhook receiver to process the HTTP POST
requests and react on the received event data.

Test the webhook from XProtect (Optional)

You should test the event to verify that the event triggers and performs the actions you define before utilizing the event and webhook
in daily operations.

1. Open theManagement Client > Rules and Events and select the event you want to test.

2. Click Test Event to test the event.

3. Verify that the actions defined for the event have been successfully performed, for example an email or SMS has been sent,
scripts have been run, alarms have been updated, etc.

Integrations

Webhook integrations
Webhooks can be set up to integrate with or without using code scripts.

No-code integrations

You can use webhooks to integrate with 3rd party no-code web applications such as Zapier, IFTTT, or Automate.io.

No-code applications help you to integrate with applications that do not themselves contain webhook integrations and help you share
event data between them, with the application functioning as the facilitator of the data exchange.

For example, when an event is triggered, webhooks can be set up to:

l Send an SMS message to one or more recipients

l Send a message in Microsoft Teams to one or more recipients

l Flash a control light in a control room

l Open a support ticket

l Add a row to a spreadsheet

l andmany more...

Code integrations

You can also use webhooks to execute specific scripts on an endpoint of a web server when the event data is received.

For example, you can use webhooks to do the following when the event is triggered:

l Run Python code in a Flask server

l Run Node code in a Next.js server

l Trigger an Amazon Lambda function

l andmany more...

Integrations - examples

No-code webhook integrations
The following is an example of a webhook integration using Low-code or No-code on the receiving server.

The IF This Then That (IFTTT) web application is used as an example here, but the general guidelines can also be applied to similar
web applications such as Zapier.

When integrating 3rd party No-code web applications with webhooks, the following actions generally apply:

l In the 3rd party application, set up the actions to be performed based on the event that will trigger the webhook.

l In the 3rd party application, copy the URL as this will be used to set up the webhook in XProtect.

l In XProtect Management Client create and set up the webhook, using the URL from the 3rd party application.

l In XProtect Management Client, create the rule that will trigger the webhook for a given event.

Remember to test your event before deploying your changes.

Example - Send an email with IFTTT when an event is triggered

This example contains several procedures that illustrate how you can use the IF This Then That (IFTTT) web application to send an
email message to a Gmail account when an event is triggered in your XProtect system.

1. Connect a webhook in IFTTT

First, create the IFTTT Applet that will send the Gmail message for the event and save the resulting URL.

Youmust create an IFTTT user in order to utilize the features of the IFTTT website.

1. Go to the IFTTT website and log in with your IFTTT credentials.

2. Create a new Applet: https://ifttt.com/create

3. Set up the If This part:

a. Click If This

b. Search forWebhooks

c. Click the blueWebhooks tile

d. Click Receive a web request with a JSON payload

e. Click Connect

f. Write xprotect_test in Event Name

g. Click Create trigger

4. Set up the Then That part:

a. Click Then That

b. SearchGmail

c. Click the blue Gmail tile

d. Click Send yourself an email

e. Click Connect

f. Click Create action

5. Click Continue

6. Click Finish

7. Go to https://ifttt.com/maker_webhooks

8. ClickDocumentation

9. Identify your URL. The URL should be something similar to: https://maker.ifttt.com/trigger/
{event}/json/with/key/lPY4YYsvGSfTSJBM54MrDDSOGWTmk6z9VSD113hxoDY

10. Replace {event} with xprotect_test. The URL should end up similar to: https://maker.ifttt.com/trigger/xprotect_
test/json/with/key/lPY4YYsvGSfTSJBM54MrDDSOGWTmk6z9VSD113hxoDY

11. Copy and save this address. The address should not be shared with unauthorized users.

2. Create a webhook in XProtect

After you have set up the applet in IFTTT, youmust create the webhook in XProtect, using the URL you created in steps 9-11 above
when setting up the IFTTT applet.

1. In theManagement Client > Rules and Events >Webhooks, right-clickWebhooks and select Add New…

2. InWebhook Information:

a. Name field: Enter “IFTTT Gmail”

b. Address field: Set the address to the one from step 11 of the previous section. It should be something similar to:
https://maker.ifttt.com/trigger/xprotect_test/json/with/key/lPY4YYsvGSfTSJBM54MrDDSOGWTmk6z9VSD113hxoDY

3. Click Save in the toolbar to save the newwebhook.

Trigger the webhook with a rule in XProtect

After you have created and set up a webhook, youmust create and set up an event to trigger the webhook.

1. In theManagement Client > Rules and Events > Rules, right-click Rules and select Add Rule… to start theManage Rule
wizard at Step 1: Type of rule.

2. In Step 1: Type of rule > Name field, enter Send Gmail and add an optional description of the rule in the Description field.

3. In the Select the rule type you want you create pane, select Perform an action on <event>

4. In the Edit the rule description pane, click event and in Events > External Events > User-defined Events, select Event High.

5. ClickOK to create the event.

6. ClickNext to go to Step 2: Conditions.

7. In Step 2: Conditions, apply any conditions relevant to the event you are creating.

8. ClickNext to go to Step 3: Actions.

9. In Step 3: Actions, scroll down and select Send event info toWebhook at <address>.

10. Click address on the Edit the rule description pane

11. Add the IFTTT Gmailwebhook and clickOK.

12. ClickNext to go to Step 4: Stop criteria.

13. In Step 4: Stop criteria, click Finish to create the rule.

Test the webhook from XProtect (Optional)

You should test the event to verify that the event triggers and sends the email as it should before utilizing the event and webhook in
daily operations.

1. Open theManagement Client > Rules and Events and clickUser-defined Events.

2. Select Event High and click Test Event to test the event.

3. Open the inbox of the Gmail account you specified in the IFTTT web application above to verify you have received the correct
email with the event you triggered.

Changing the email content (Optional)

You can change the content of the existing email message sent through the IFTTT web application.

1. Go to the IFTTT website and log in with your IFTTT credentials.

2. Go toMy Applets - IFTTT

3. Click the If Maker Event ‘xprotect_test’, then ...Applet

4. Click Settings

5. Click Then

6. Edit the text of the email subject or email body, for example rename the subject to Event High from XProtect

7. ClickUpdate action and then clickUpdate.

Code webhook integrations
The following are examples of webhook integrations using code on the receiving server.

When integrating 3rd party server with webhooks, the following actions generally apply:

l Start a web server with en endpoint listening for webhooks.

l Locate and copy the address to the receiving server as this will be used to set up the webhook in XProtect.

l In XProtect Management Client, create and set up the webhook, using the address of the receiving server.

l In XProtect Management Client, create the rule that will trigger the webhook for a given event.

Remember to test your event before deploying your changes.

Example: Receiving events from XProtect in Node.js (with Express)

This example illustrates how to receive events from XProtect in a Node.js Express server using webhooks.

Create and start a Node.js Express server

First youmust create and start a web server that listens for incoming events.

1. Download and install Node.js from https://nodejs.org.

2. Create a folder anywhere in your file system and name the folder webhooks.

3. Open a terminal and navigate to the webhooks folder you just created.

4. Run npm init and use the default values.

5. Run npm install express.

6. Inside the webhooks folder, create a file and name the file index.js.

7. Open the index.js file in a text editor and paste the sample code below into the index.js file.

const express = require('express');

const crypto = require('crypto');

// change SECRET_TOKEN for your own token

// never hard code the token in the code

// we do it only for demonstration purposes

// instead, store it as an environment variable

const SECRET_TOKEN = "32212c72863c01a931609c5ebfe1abc5";

const isSignatureValid = (body, headerSignature, secretToken) => {

 const digest = crypto.createHmac("sha256", secretToken).update(body).digest();

 const expectedSignature = `sha256=${digest.toString('base64').toString('utf-8')}`;

 if (expectedSignature.length !== headerSignature?.length) return false;

 return crypto.timingSafeEqual(Buffer.from(headerSignature), Buffer.from(expectedSignature));

}

const app = express();

app.use(express.json());

app.post('/webhooks', (req, res) => {

 if (!isSignatureValid(

 JSON.stringify(req.body),

 req.headers['x-hub-signature-256'],

 SECRET_TOKEN)){

 console.log('Received event with invalid signature');

 return res.status(403).end();

 }

 console.log('Received event from XProtect through Webhook:');

 console.log(req.body);

 res.send('');

})

app.listen(5000, () => {

 console.log(`Server started...`);

})

8. In the terminal, run node -p "require('crypto').randomBytes(64).toString('hex');" to generate your own secret token.

9. Copy the token string and paste it in line 8 of index.js replacing the example token.

10. Save the index.js file

11. Use the terminal to run node index.js. The logmessage: “Server started…” should be displayed.

Create a webhook in XProtect

After you have started the server, youmust create the webhook in XProtect.

1. InManagement Client > Rules and Events >Webhooks, right-clickWebhooks and select Add New…

a. InWebhook Information:

b. Name field: Enter Node integration

c. Token (optional) field: Enter the token string you copied into the index.js file.

d. Address field: Set the address of the receiving server.

If you created the Node.js server on the same machine as the Event Server, enter http://127.0.0.1:5000/webhooks

If you created the Node.js server on a server with a public IP address, enter https://<IP>:5000/webhooks where
<IP> is the IP address of the server with a public address.

For Node.js servers onmachines without public addresses, see the section below.

You can use http:// instead of https://, but using http:// through non-secure networks may expose event data in plain text.
Using the more secure https:// is strongly recommended.

2. Click Save in the toolbar to save the newwebhook.

For Node.js servers without public addresses

If you created the Node.js server on a machine on a different network and without a public IP address, for example on a development
or testingmachine, you can use NGrok for testing purposes.

1. Install https://ngrok.com/ in the same machine you installed the Node.js server on.

2. On your machine, locate and run ngrok http 5000

3. Copy the generated public address and insert the address in the Address field above. The NGrok public address should be
something similar to: https://0c60-12-212-221-50.eu.ngrok.io

Trigger the webhook with a rule in XProtect

After you have created and set up a webhook, youmust create and set up an event to trigger the webhook.

1. In theManagement Client > Rules and Events > Rules, right-click Rules and select Add Rule… to start theManage Rule
wizard at Step 1: Type of rule.

2. In Step 1: Type of rule > Name field, enter Send Event High to Node and add an optional description of the rule in the
Description field.

3. In the Select the rule type you want you create pane, select Perform an action on <event>

4. In the Edit the rule description pane, click event and in Events > External Events > User-defined Events, select Event High.

5. ClickOK to create the event.

6. ClickNext to go to Step 2: Conditions.

7. In Step 2: Conditions, apply any conditions relevant to the event you are creating.

8. ClickNext to go to Step 3: Actions.

9. In Step 3: Actions, scroll down and select Send event info toWebhook at <address>.

10. Clickwebhook on the Edit the rule description pane

11. Add the Node integration webhook and clickOK.

12. ClickNext to go to Step 4: Stop criteria.

13. In Step 4: Stop criteria, click Finish to create the rule.

Test the webhook from XProtect (Optional)

You should test the event to verify that the event triggers and is recieved in the Express server before utilizing the event and webhook
in daily operations.

1. Open theManagement Client > Rules and Events and clickUser-defined Events.

2. Select Event High and click Test Event to test the event.

3. Open the console that is running the server. The Received event from XProtect through Webhook logmessage should be
displayed.

Troubleshooting (Optional)

If you don’t receive the events in your web server, open the MIP Logs from the Event Server tray icon to troubleshoot any potential
errors.

The log of the error can take up to 90 seconds to appear because of the retry policy.

Example: Receiving events from XProtect in Python (with Flask)

This example illustrates how to receive events from XProtect on a Python Flask server using webhooks.

Create and start a Python Flask server

First youmust create and start a web server that listens for incoming events.

1. Download and install the latest version of Python from https://www.python.org/.

2. Create a folder anywhere in your file system and name the folder webhooks

3. Open a terminal and navigate to the webhooks folder you just created.

4. Create a virtual environment inside the folder b y using the command python -m venv venv

5. Activate the virtual environment by using the command \venv\Scripts\activate

6. Install the Flask server by using the command pip install flask

7. Inside the webhooks folder, create a file and name the filemain.py.

8. Open themain.py file in a text editor and paste the sample code below into themain.py file.

from flask import Flask, request

import hashlib

import hmac

import base64

change SECRET_TOKEN for your own token

never hard code the token in the code

we do it only for demonstration purposes

instead, store it as an environment variable

SECRET_TOKEN = bytes("383b9d27c4a892626881d73b0f70c5b62b213ab89d33c8788ac85bd750dbdf59", 'utf-8')

def is_signature_valid(body: bytes, header_signature: str, secret_token: bytes) -> bool:

 digest: bytes = hmac.HMAC(key=secret_token, msg=body, digestmod=hashlib.sha256).digest()

 expected_signature: str = f"sha256={base64.b64encode(digest).decode('utf-8')}"

 return hmac.compare_digest(header_signature, expected_signature)

app = Flask(__name__)

@app.route('/webhooks', methods=['POST'])

def webhooks():

 body = request.data

 header_signature = request.headers.get('X-Hub-Signature-256', '')

 if not is_signature_valid(body, header_signature, SECRET_TOKEN):

 print('Received event with invalid signature')

 return '', 403

 print("Received event from XProtect through Webhook:")

 print(request.json)

 return '', 200

app.run(host='127.0.0.1', port=5000)

9. In the Python interpreter, run the import secrets; print(secrets.token_hex(32)) command to generate your own secret token
string.

10. Copy and paste the token string in line 10 of themain.py script file, replacing the dummy token sting of the sample code.

11. Save your changes to themain.py script file.

12. Use the terminal to run the python main.py command. The * Serving Flask app 'main' logmessage should be displayed.

Create a webhook in XProtect

After you have started the server, youmust create the webhook in XProtect.

1. InManagement Client > Rules and Events >Webhooks, right-clickWebhooks and select Add New…

a. InWebhook Information:

b. Name field: Enter Python integration

c. Token (optional) field: Enter the token string you copied into themain.py file.

d. Address field: Set the address of the receiving server.

If you installed Python on the same machine where the Event Server, enter http://127.0.0.1:5000/webhooks

If you installed Python on a server with a public IP address, enter https://<IP>:5000/webhooks where <IP> is the
IP address of the server with a public address.

For Python installed onmachines without public addresses, see the section below.

You can use http:// instead of https://, but using http:// through non-secure networks may expose event data in plain text.
Using the more secure https:// is strongly recommended..

2. Click Save in the toolbar to save the newwebhook.

For Python on machines without public addresses

If you installed Python on a machine on a different network and without a public IP address, for example on a development or testing
machine, you can use NGrok for testing purposes.

1. Install https://ngrok.com/ on the same machine you installed Python on.

2. On your machine, locate and run ngrok http 5000

3. Copy the generated public address and insert the address in the Address field above. The NGrok public address should be
something similar to: https://0c60-12-212-221-50.eu.ngrok.io

Trigger the webhook with a rule in XProtect

After you have created and set up a webhook, youmust create and set up an event to trigger the webhook.

1. In theManagement Client > Rules and Events > Rules, right-click Rules and select Add Rule… to start theManage Rule
wizard at Step 1: Type of rule.

2. In Step 1: Type of rule > Name field, enter Send Event High to Python and add an optional description of the rule in the
Description field.

3. In the Select the rule type you want you create pane, select Perform an action on <event>

4. In the Edit the rule description pane, click event and in Events > External Events > User-defined Events, select Event High.

5. ClickOK to create the event.

6. ClickNext to go to Step 2: Conditions.

7. In Step 2: Conditions, apply any conditions relevant to the event you are creating.

8. ClickNext to go to Step 3: Actions.

9. In Step 3: Actions, scroll down and select Send event info toWebhook at <address>.

10. Click address on the Edit the rule description pane

11. Add the Python integration webhook and clickOK.

12. ClickNext to go to Step 4: Stop criteria.

13. In Step 4: Stop criteria, click Finish to create the rule.

Test the webhook from XProtect (Optional)

You should test the event to verify that the event triggers and is received in the Flask server before utilizing the event and webhook in
daily operations.

1. Open theManagement Client > Rules and Events and clickUser-defined Events.

2. Select Event High and click Test Event to test the event.

3. Open the console that is running the server. The Received event from XProtect through Webhook logmessage should be
displayed.

Troubleshooting (Optional)

If you don’t receive the events in your web server, open the MIP Logs from the Event Server tray icon to troubleshoot any potential
errors.

The log of the error can take up to 90 seconds to appear because of the retry policy.

API Documentation

The webhooks API
This overview of the XProtect webhooks API is based on the Webhooks API, version 1.0.

The HTTP POST object consists of a header and the body (payload).

HTTP POST Body (version 1.0)

The payload of the HTTP POST is an application/json object with the following keys:

Key Type Description

Event BaseEvent (serialized to JSON) The event that triggered the rule.

Site

{

 ServerHostName: string,

AbsoluteUri: string,

 ServerType: string,

}

Information about the system where this event originated.

Use this field when using the same webhook endpoint for multiple
XProtect installations.

HTTP POST Body example

{

 "Event": {

 "EventHeader": {

 "ID": "2388f93d-5cb0-48e0-9524-d8bb981e1629",

 "Timestamp": "2022-11-26T15:59:39.2988877Z",

 "Type": "System Event",

 "Version": "1.0",

 "Priority": 1,

 "PriorityName": "High",

 "Name": "External Event",

 "Message": "External Event",

 "Source": {

 "Name": "Event High",

 "FQID": {

 "ServerId": {

 "Type": "XPCO",

 "Hostname": "ec2amaz-111k11j",

 "Port": 80,

 "Id": "2f04e7ee-2ee2-49d4-8415-de28dba7ef2e",

 "Scheme": "http"

 },

 "ParentId": "2f04e7ee-2ee2-49d4-8415-de28dba7ef2e",

 "ObjectId": "13860010-ded3-42ff-a2a9-cc6ba4a49636",

 "FolderType": 0,

 "Kind": "c9bdac3f-41dc-4afa-b057-61767a3914b7"

 }

 },

 "MessageId": "0fcb1955-0e80-4fd4-a78a-db47ee89700c"

 }

 },

 "Site": {

 "ServerHostname": "ec2amaz-111k11j",

 "AbsoluteUri": "http://ec2amaz-111k22j/",

 "ServerType": "XPCO"

 }

}

HTTP POST Headers

The HTTP POST headers contains the following keys:

Key Type Description

X-Milestone-Api-Version String The version of the body. “v1.0” is currently the only supported version.

X-Hub-Signature-256 String

The HMAC hex digest using SHA-256 of the body.

The value always starts with “sha256=”.

For more information, see “Improving webhook security with tokens”.

HTTP POST header example

{

 "X-Hub-Signature-256": "sha256=LBr6+XIEOZKgMck2/aG1CNCaCCOAwHT4o+vYRE4D3JM=",

 "X-Milestone-Api-Version": "v1.0",

 "content-type": "application/json; charset=utf-8"

}

Failed requests and retry policy

If the POST requests fails with a 400 error, it is not retried again.

If the POST requests fails with any other status code, the request will be retried 2 more times, with each attempt spaced 30 seconds
apart.

Improving webhook security with tokens
If you expose a webserver to listen to incoming webhooks, anyone who knows the URL can trigger the server response to the webhook
by sending an HTTP POST request to the server. You can reduce the risk of this unauthorized triggering by defining a token for the
webhook.

If you add a token to your webhook, you can validate that your XProtect installation is the actual source of the HTTP POST.

Other methods can be used to help secure the integration of the webserver with the webhooks, for example not exposing the server to
the internet or using an IP whitelist.

To improve your webhook security, you must:
1. Generate a secret token.

2. Configure a secret token in the Management Client.

3. Validate incoming requests on the receiving web server.

Generate a secret token

To randomly generate a token string, you can use an online generator, for example LastPass.com or use a code-based password
generator function, for example the secrets.token_hex() function in Python 3.6 or greater.

Example:

import secrets; print(secrets.token_hex(32))

The python command in the example creates a 32-byte hexadecimal text string token.

Configure a secret token in the Management Client

1. Copy the text string you want to use as the token to the clipboard

2. In theManagement Client > Rules and Events >Webhooks, select the webhook you want to add a token to

3. InWebhook Information > Token (optional) field: Paste the token string for the webhook.

4. Click Save in the toolbar to update the webhook.

Validate incoming requests on the receiving webserver

Before processing a request, youmust validate that the signature from the header matches the signature you compute.

Generate the signature using the base 64 encoded HMAC SHA-256 digest, for example:

signature = `sha256=${HMAC256(secret_token, body).toBase64().toString('utf-8')}`

Signature validation examples

The following are examples of token string generation using various programming languages: Python, Node.js and C#.

Signature validation example – Python

import hashlib

import hmac

import base64

def is_signature_valid(body: bytes, header_signature: str, secret_token: bytes) -> bool:

 digest: bytes = hmac.HMAC(key=secret_token, msg=body, digestmod=hashlib.sha256).digest()

 expected_signature: str = f"sha256={base64.b64encode(digest).decode('utf-')}"

 return hmac.compare_digest(header_signature, expected_signature)

Signature validation example - Node.js

const crypto = require('crypto')

const isSignatureValid = (body, headerSignature, secretToken) => {

 const digest = crypto.createHmac("sha256", secretToken).update(body).digest();

 const expectedSignature = `sha256=${digest.toString('base64').toString('utf-8')}`

 return crypto.timingSafeEqual(Buffer.from(headerSignature), Buffer.from(expectedSignature))

}

Signature validation example - C#

private static bool isSignatureValid(string data, string headerSignature, string token)

{

 var hasher = new HMACSHA256(Encoding.UTF8.GetBytes(token));

 var expectedSignature = $"sha256={Convert.ToBase64String(hasher.ComputeHash
(Encoding.UTF8.GetBytes(data)))}";

 return CryptographicOperations.FixedTimeEquals(Encoding.UTF8.GetBytes(expectedSignature),
Encoding.UTF8.GetBytes(headerSignature));

}

About Milestone

Milestone Systems is a leading provider of open platform video management software; technology that helps
the world see how to ensure safety, protect assets and increase business efficiency. Milestone Systems
enables an open platform community that drives collaboration and innovation in the development and use of
network video technology, with reliable and scalable solutions that are proven inmore than 150,000 sites
worldwide. Founded in 1998, Milestone Systems is a stand-alone company in the Canon Group. For more
information, visit https://www.milestonesys.com/.

helpfeedback@milestone.dk

https://www.linkedin.com/company/milestone-systems
https://www.facebook.com/milestonesys
https://twitter.com/milestonesys
https://www.instagram.com/milestonesystems/
https://www.youtube.com/user/Milestonesys

	Copyright, trademarks, and disclaimer
	Supported VMS products and versions
	Overview
	Introduction

	Installation
	Webhooks installation

	Configuration
	Creating webhooks in XProtect
	1. Create the webhook URL
	2. Create a webhook in the Management Client
	3. Create a rule to trigger the webhook
	Test the webhook from XProtect (Optional)

	Integrations
	Webhook integrations
	No-code integrations
	Code integrations

	Integrations - examples
	No-code webhook integrations
	Example - Send an email with IFTTT when an event is triggered
	1. Connect a webhook in IFTTT
	2. Create a webhook in XProtect
	Trigger the webhook with a rule in XProtect
	Test the webhook from XProtect (Optional)
	Changing the email content (Optional)

	Code webhook integrations
	Example: Receiving events from XProtect in Node.js (with Express)
	Create and start a Node.js Express server
	Create a webhook in XProtect
	For Node.js servers without public addresses

	Trigger the webhook with a rule in XProtect
	Test the webhook from XProtect (Optional)
	Troubleshooting (Optional)

	Example: Receiving events from XProtect in Python (with Flask)
	Create and start a Python Flask server
	Create a webhook in XProtect
	For Python on machines without public addresses

	Trigger the webhook with a rule in XProtect
	Test the webhook from XProtect (Optional)
	Troubleshooting (Optional)

	API Documentation
	The webhooks API
	HTTP POST Body (version 1.0)
	HTTP POST Headers
	Failed requests and retry policy

	Improving webhook security with tokens
	To improve your webhook security, you must:
	Generate a secret token
	Configure a secret token in the Management Client
	Validate incoming requests on the receiving webserver

	Signature validation examples

